亚洲国产成人久久综合一区国产成人AV一区二区三区中文精品字幕网久久久久,亚洲人成网站18禁止久久影院,A真人一级无码毛片精品国产一区二区三区,91精品国产综合久久久久久一区黄网无码,91久久久无码国产精品免费不卡,国产欧美日本韩高清视频一区二区三区激情在线

熱門搜索:A549    293T 金黃色葡萄球菌 大腸桿菌 AKK菌
購物車 1 種商品 - 共0元
當前位置: 首頁 > 行業(yè)資訊 > Dangerous pathogens use this sophisticated machinery to infe

Dangerous pathogens use this sophisticated machinery to infe

 

Dangerous pathogens use this sophisticated machinery to infect hosts

Date:May 17, 2019

Source:California Institute of Technology

Summary:A detailed new model of a bacterial secretion system provides directions for developing precisely targeted antibiotics.

Gastric cancer, Q fever, Legionnaires' disease, whooping cough -- though the infectious bacteria that cause these dangerous diseases are each different, they all utilize the same molecular machinery to infect human cells. Bacteria use this machinery, called a Type IV secretion system (T4SS), to inject toxic molecules into cells and also to spread genes for antibiotic resistance to fellow bacteria. Now, researchers at Caltech have revealed the 3D molecular architecture of the T4SS from the human pathogen Legionella pneumophila with unprecedented details. This could in the future enable the development of precisely targeted antibiotics for the aforementioned diseases.

The work was done in the laboratory of Grant Jensen, professor of biophysics and biology and Howard Hughes Medical Institute investigator, in collaboration with the laboratory of Joseph Vogel at the Washington University School of Medicine in St. Louis (WUSTL). A paper describing the research appeared online on April 22 in the journal Nature Microbiology.

There are nine different types of bacterial secretion systems, Type IV being the most elaborate and versatile. A T4SS can ferry a wide variety of toxic molecules -- up to 300 at once -- from a bacterium into its cellular victim, hijacking cellular functions and overwhelming the cell's defenses.

In 2017, Caltech postdoctoral scholar Debnath Ghosal and his collaborators used a technique called electron cryotomography to reveal, for the first time, the overall low-resolution architecture of the T4SS in Legionella, the bacteria that causes Legionnaires' disease, a severe and often lethal form of pneumonia.

Ghosal, along with Kwangcheol Jeong of WUSTL and their colleagues, have now made a detailed structural model of this dynamic multi-component machine. The team also made precise perturbations to the bacterium's genes to study mutant versions of the T4SS, revealing how this complex machine organizes and assembles.

The model revealed that the secretion system is composed of a distinct chamber and a long channel, like the chamber and barrel of a gun. Characterizing these and other components of the T4SS could enable the development of precisely targeted antibiotics.

Current antibiotics act broadly and wipe out bacteria throughout the body, including the beneficial microorganisms that live in our gut. In the future, antibiotics could be designed to block only the toxin delivery systems (such as the T4SS) of harmful pathogens, rendering the bacteria inert and harmless without perturbing the body's so-called "good bacteria."

The paper is titled "Molecular architecture, polar targeting and biogenesis of the Legionella Dot/Icm T4SS." Ghosal and Jeong are co-first authors. In addition to Jensen and Vogel, other co-authors are former Caltech postdoctoral scholar Yi-Wei Chang, now of the University of Pennsylvania; Jacob Gyore of WUSTL; Lin Teng of the University of Florida; and Adam Gardner of the Scripps Research Institute. The work was funded by the National Institutes of Health.

Story Source:

Materials provided by California Institute of Technology. Original written by Lori Dajose. Note: Content may be edited for style and length.

 

玉环县| 西畴县| 成安县| 安远县| 河东区| 乐陵市| 沂水县| 马边| 临洮县| 华坪县| 宜良县| 封开县| 广宗县| 阿拉善右旗| 华容县| 娄底市| 望都县| 霍林郭勒市| 家居| 井陉县| 赤城县| 贵南县| 淄博市| 南部县| 佳木斯市| 尼玛县| 桃园县| 鹿泉市| 临高县| 琼中| 楚雄市| 云梦县| 鸡西市| 镇远县| 耿马| 黄浦区| 漯河市| 西和县| 耒阳市| 广水市| 中西区|