亚洲国产成人久久综合一区国产成人AV一区二区三区中文精品字幕网久久久久,亚洲人成网站18禁止久久影院,A真人一级无码毛片精品国产一区二区三区,91精品国产综合久久久久久一区黄网无码,91久久久无码国产精品免费不卡,国产欧美日本韩高清视频一区二区三区激情在线

熱門搜索:A549    293T 金黃色葡萄球菌 大腸桿菌 AKK菌
購物車 1 種商品 - 共0元
當(dāng)前位置: 首頁 > 行業(yè)資訊 > Researchers grow active mini-brain-networks

Researchers grow active mini-brain-networks

Date:

June 27, 2019

Source:

Cell Press

Summary:

Cerebral organoids are artificially grown, 3D tissue cultures that resemble the human brain. Now, researchers report success with functional neural networks derived from these organoids. Although the organoids aren't actually 'thinking,' the researchers' new tool -- which detects neural activity using organoids -- could provide a method for understanding human brain function.

Cerebral organoids are artificially grown, 3D tissue cultures that resemble the human brain. Now, researchers from Japan report functional neural networks derived from these organoids in a study publishing June 27 in the journal Stem Cell Reports. Although the organoids aren't actually "thinking," the researchers' new tool -- which detects neural activity using organoids -- could provide a method for understanding human brain function.

                                                             

"Because they can mimic cerebral development, cerebral organoids can be used as a substitute for the human brain to study complex developmental and neurological disorders," says corresponding author Jun Takahashi, a professor at Kyoto University.

 

However, these studies are challenging, because current cerebral organoids lack desirable supporting structures, such as blood vessels and surrounding tissues, Takahashi says. Since researchers have a limited ability to assess the organoids' neural activities, it has also been difficult to comprehensively evaluate the function of neuronal networks.

 

"In our study, we created a new functional analysis tool to assess the comprehensive dynamic change of network activity in a detected field, which reflected the activities of over 1,000 cells," says first and co-corresponding author Hideya Sakaguchi, a postdoctoral fellow at Kyoto University (currently at Salk Institute). "The exciting thing about this study is that we were able to detect dynamic changes in the calcium ion activity and visualize comprehensive cell activities."

 

To generate the organoids, Takahashi, Sakaguchi, and their team created a ball of pluripotent stem cells that have the potential to differentiate into various body tissues. Then, they placed the cells into a dish filled with culture medium that mimicked the environment necessary for cerebral development. Using the organoids, the team successfully visualized synchronized and non-synchronized activities in networks and connections between individual neurons. The synchronized neural activity can be the basis for various brain functions, including memory.

 

"We believe that our work introduces the possibility of a broad assessment of human cell-derived neural activity," Sakaguchi says. The method could help researchers understand processes by which information is encoded in the brain through the activity of specific cell populations, as well as the fundamental mechanisms underlying psychiatric diseases, he says.

 

While cerebral organoids provide a means for studying the human brain, ethical concerns have been previously raised regarding the neural function of cerebral organoids.

 

"Because cerebral organoids mimic the developmental process, a concern is that they also have mental activities such as consciousness in the future," Sakaguchi says. "Some people have referenced the famous 'brains in a vat' thought experiment proposed by Hilary Putnam, that brains placed in a vat of life-sustaining liquid with connection to a computer may have the same consciousness as human beings."

 

However, Takahashi and Sakaguchi believe that cerebral organoids are unlikely to develop consciousness because they lack input from their surrounding environments.

 

"Consciousness requires subjective experience, and cerebral organoids without sensory tissues will not have sensory input and motor output," Sakaguchi says. "However, if cerebral organoids with an input and output system develop consciousness requiring moral consideration, the basic and applied research of these cerebral organoids will become a tremendous ethical challenge."

 

In the future, applied organoid research will likely explore three main areas -- drug discovery, modelling neuropsychiatric disorders, and regenerative medicine, Takahashi says.

 

"Cerebral organoids can bring great advances to pharmacological companies by replacing traditional animal models and can also be used to model untreatable neural diseases," he says. "Using our method, it will be possible to analyze cell activity patterns in brain functions to further explore these areas."

 

Story Source:

 

Materials provided by Cell Press. Note: Content may be edited for style and length.

 

Journal Reference:

 

Hideya Sakaguchi, Yuki Ozaki, Tomoka Ashida, Takayoshi Matsubara, Naotaka Oishi, Shunsuke Kihara, Jun Takahashi. Self-Organized Synchronous Calcium Transients in a Cultured Human Neural Network Derived from Cerebral Organoids. Stem Cell Reports, 2019; DOI: 10.1016/j.stemcr.2019.05.029

    

清原| 临澧县| 屯昌县| 三门峡市| 灌南县| 广饶县| 项城市| 临安市| 庆阳市| 米脂县| 神池县| 哈尔滨市| 大石桥市| 区。| 中西区| 开封县| 临潭县| 奉节县| 贡山| 怀来县| 钟祥市| 南乐县| 遂昌县| 工布江达县| 台安县| 兴和县| 沙湾县| 泰和县| 连山| 花垣县| 台北县| 临泉县| 平利县| 固始县| 工布江达县| 桂平市| 静乐县| 永顺县| 宜宾市| 镇沅| 长宁县|